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Tools for Climate Forecast

Seasonal Prediction

Dynamical Model
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Limitations

77 Climate Models are

> The autocorrelation of rainfall is very poor. ) computer codes based

on fundamental laws of
physics

» The relation between rainfall and predictors go on changing .




Standard
Evaluation
process of

Dynamical
Model

Observed rainfall vs Model forecasted rainfall (mostly descriptive statistics)

Taylor Diagram

1.5
The Taylor diagram communicates

three skill scores in one plot due to
F % the cosine properties between :

1O p=-r
i *Correlation.
*Centered RMSE.

*S.D.
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Limitation: Dose not provide “Why” part
which will help dynamical modeling
community to improve model physics,
teleconnection or others factors.



Major
Predictability
of Seasonal
Forecast time
scale: ENSO

El Nifio La Nifta
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Process-
oriented
Evaluation

based on
Teleconnection

////

Observed teleconnection (rainfall-ENSO) vs Model forecasted teleconnection
(rainfall-ENSO)

Common tool: Pearson’s Correlation Coefficient

Example: Ethiopian “Kiremt” season, Acharya et al.2022, Ehsan et al 2021
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Causal Pathways for Teleconnection

BAMS

Article

® “.the relative contributions of different teleconnections to regional

anomalies are usually not understood. While physical knowledge about
Marlene Kretschmer, Samantha V. Adams, Alberto Arribas, Rachel Prudden, . . . . . .
Niall Robinson, Elena Saggioro, and Theodore G. Shepherd the involved mechanisms is often available, how to quantify a particular
causal pathway from data are usually unclear”.

ABSTRACT: Teleconnections are sources of predictability for regional weather and climate, but

the relative contributions of different teleconnections to regional anomalies are usually not un- [ ] " H H vy H H H ”
derstood. While physical knowledge about the involved mechanisms is often available, how to HOWEVG rl they used Pa rtlal Correlatlon ’ M UItIple Llnear Regre55|on
quantify a particular causal pathway from data are usually unclear. Here, we argue for adopting “ H BHA ” P .

a causal inference-based framework in the statistical analysis of teleconnections to overcome and Condltlonal PrOba blllty to qua ntlfylng the Causal Pathways US|ng
this challenge. A causal approach requires explicitly including expert knowledge in the statisti- .

cal analysis, which allows one to draw quantitative conclusions. We illustrate some of the key flve exam p | €s.

concepts of this theory with concrete examples of well-known atmospheric teleconnections. We

further discuss the particular challenges and advantages these imply for climate science and argue

that a systematic causal approach to statistical inference should become standard practice in the
study of teleconnections.

KEYWORDS: Atmospheric circulation; Teleconnections; Statistical techniques; Time series; [ ] EXa m p | es: Co mmon d r‘ive rs' M ediati ng pathways, Di rect an d i n d i r‘ect

Interannual variability; Regional effects

pathways, Blocking the correct paths in the network, Measuring
nonlinear dependencies.

AMERICAN METEOROLOGICAL SOCIETY REGEMBER 20211, E2247, //



Goal of this study

Causal discovery algorithms go
beyond correlation-based measures
by systematically excluding
common driver effects and indirect
links.

Here, we explore a causal network
for model evaluation as a type of
process-oriented framework.

Based on data-driven causal
fingerprints, the causal network can
understand differences between
models and observations based on
the physical process which
potentially influences model biases
in simulating climate variables.

0-’1
He0

This process based evaluation and
informed model development
community. to improve the
teleconnection within model world.



3 Traps of Statistics (3S’)
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o
CAUSAL
RELATIONSHIPS <
OUTCOMES € EXPOSURES p

e.9. LUNG CANCER e.g- SMOKING =

* (Causality is the science of understanding the “cause —
and- effect” relationships in the world around us.

Causallty * X (new drug) caused Y (patient’s health) if when all

confounders (age, severity of illness etc.) are adjusted, an
intervention in X results in a change in Y, but intervention
in Y does not change X.



Causality

JUDEA PEARL

WINNER OF THE TURING AWARD

AND DANA MACKENZIE
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THE NEW SCIENCE
OF CAUSE AND EFFECT

Pearl's Ladder of Causation

3. COUNTERFACTUALS T
ACTIVITY: Imagn CHON erstanding

QUESTIONS:
W

EXAMPLES:

-

2. INTERVENTION
ACTIVITY:  Doing, Intervening

QUESTIONS:
W

EXAMPLES:

1. ASSOCIATION
ACTIVITY:  Sec

ing, Obscrving

QUESTIONS:

MBVEL

The Three Layer Causal Hierarchy

EXAMPLES:

What if I had acted
differently?

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|x) How would seeing X about a disease?
change my belief inY? What does a survey tell us

about the election results?
2. Intervention Doing What if? What if I take aspirin, will my
P(y|do(z), ) Intervening What if I do X? headache be cured?

What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
P(yz|2', ) Retrospection Was it X that caused Y? stopped my headache?

Would Kennedy be alive had
Oswald not shot him?

What if I had not been smok-
ing the past 2 years?




Causal Modeling

Causal Discovery Causal Inference

Learn the graph/structure from the data Inferring/answering conditional questions
from causal graph

‘Would we
have fun?

-
Causal
= S o b
&5
Build a graphical representation (often a It is about drawing meaningful and well-
Directed Acyclic Graph or DAG) that supported causal conclusions within a
captures the causal relationships among known causal framework.

variables.

“Causal discovery is the process of building the causal model from data
when the model is unknown, while causal inference is the process of using the
causal model (whether discovered or assumed) to make meaningful causal
statements and predictions.”



Basics of Causal Graphs

node or vertex

0
Y Adjacent nodes: XandY,YandZ Non-adjacent nodes:
XandZ

X is parent of Y Y is parent of Z

Y is child of X Z is child of Y
X Is ancestor Y is ancestor
of Yand Z of Z

Y is descendant Z is descendant
of X of Y and X



Causal Graphs are Directed Acyclic Graphs (DAGS)

A DAG is a graph that provides a visual representation of
causal relationships among a set of variables.

D = directed (all arrows point in only a single direction).

The direction of the arrow is the direction of causation:
A == B means A causes B.

A = acyclic (no sequence of arrows forms a closed loop,
which would be backwards causation).Causal Graph should
be acyclic.

Several Methods available to find out DAG for Causal
Discovery.

DAG Not a DAG, Correlation

< A
] L
O

Types

P AR T

(d) Collider with
descendants

(a) Chain (b) Fork (c) Collider




Methods for Causal Discover

Causal structure learning
(aka causal discovery) approaches

Constraint-based

PC algorithm (Spirtes '00)

Hybrid
MMHC (Tsamardinos '08)
GSP (Raskutti™8)

Exact

GOBNILP [Cussens “20)

Causal Structure Learning:
A Combinatorial Perspective
(Squires and Uhler, 2022)

Better guarantees
[in general)

GES (Chickering '02)

Score-based

Gradient-based

NO-TEARS (Zheng “18)

Greedy

More scalable

[in general)

Computational-statistical trade-off

arXiv:2303.15027v2 [cs.AI] 5 Apr 2023
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Abstract

Causal Discovery (CD) is the process of identifying the cause-effect relationships among
the variables of a system from data. Over the years, several methods have been developed
primarily based on the statistical properties of data to uncover the underlying causal mech-
anism. In this study, we present an extensive discussion on the methods designed to perform
causal discovery from both independent and identically distributed (i.i.d.) data and time
series data. For this purpose, we first introduce the common terminologies in causal dis-
covery, and then provide a comprehensive discussion of the algorithms designed to identify
the causal edges in different settings. We further discuss some of the benchmark datasets
available for evaluating the performance of the causal discovery methods, available tools
or software packages to perform causal discovery readily, and the common metrics used to
evaluate these methods. We also test some common causal discovery algorithms on different
benchmark datasets, and compare their performances. Finally, we conclude by presenting
the common challenges involved in causal discovery, and also, discuss the applications of
causal discovery in multiple areas of interest.

1 Introduction

The identification of the cause-effect relationships among the variables of a system from the corresponding
data is called Causal Discovery (CD). A major part of causal analysis involves unfolding the cause and effect
relationships among the entities in complex systems that can help us build better solutions in health care,
earth science, politics, business, education, and many other diverse areas (Peyrot (1996), Nogueira et al.
(2021)). The causal explanations precisely the causal factors obtained from a causal analysis play an impor-
tant role in decision-making and policy formulation as well as to foresee the consequences of interventions
without actually doing them. Causal discovery algorithms enable the discovery of the underlying causal
structure given a set of observations. The underlying causal structure also known as a causal graph (CG)
is a rep ion of the cause-effect relationships between the variables in the data (Pearl (2009)). Causal
graphs represent the causal relationships with directed arrows from the cause to the effect. Discovering the
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Structure Learning in Earth Science.

The heart of the scientific enterprise s a ratianal effort to understand the causes behind

the phenomena we sbserve. In large-scale complex dynamical systems sueh a5 the Earth
system, real experiments are rarely feasible. However, a rapidly increasing amount of
observational and simulated data opens up the use of novel data-driven causal methods
beyond the commonly adepted correlation techniques. Here, we give an overview of causal 2
inference frameworks and identify promising generic application cases common in Earth X
system sciences and beyend We discuss challenges and initiate the benchmark platform

 Part of it because of the “tigermite”
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insight into the causes behind the phenomens we sbacrve has come
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I one of Galilels early experiments—albeit a thought experiment!—, the law of flling bodies
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structure

e Autocorrelation



Why we
choose
DAG with
No tears

over
PCMCI?

PCMCI is tailored for time series
data, considering the the temporal
ordering and seeks to identify the

time lag between cause and effect.
It infers causal relationships based
on partial correlation estimation at
different time points.

DAG with NO TEARS is designed
for general observational data and
focuses on inferring causal
relationships without assuming a
specific temporal order. It
estimates partial correlations and
optimizes the DAG structure to
capture the most significant direct
associations between variables.




“DAGs with NO TEARS (Nonlinear
Optimization of TEmporal
Relationships in Systems) ”

* ltis a novel method for Bayesian Network (BN) structure learning
based on continuous optimization. BN is probabilistic graphical model
consist of two parts: a structure and parameters.

* The structure is a directed acyclic graph (DAG) that expresses
conditional independencies and dependencies among random
variables associated with nodes. The parameters consist of
conditional probability distributions associated with each node.

Y @
-ausal Bayesian Networks
» Estimating the structure of DAGs, is a challenging problem since the
Cloudy PLC=0)| PLC= search space of DAGs is combinatorial and scales superexponentially
* "DAGs with NO TEARS” introduced a fundamentally different

with the number of nodes.
rinkler , \
01 | 09 7
B \ , strategy: formulate the structure learning problem as a purely

continuous optimization problem over real matrices that avoids this
P(S=tAR=t)| 0.99 | 0.01 . . . .
P(S=t"R=N)] 0.9 | 0.1 combinatorial constraint entirely (Zheng et al.,2018)

P(S=fAR=t)| 0.9 0.1
P(S=fAR=f)| 0 1

Wet Grass




* Estimating Partial Correlations:

* Calculate the partial correlations between pairs of variables while controlling
for the effects of other variables.

* Estimate the strength of the direct associations byen variables.
Score Function and Optimization:

* Define a score function to evaluate the goodness of fit between the obse}d
partial correlations and the hypothetical set of partial correlations in the DAG.

* Employ an optimization algorithm to search for the DAG structure that
maximizes the score function.

* |teratively explore different DAG structures by adjusting the presence or
absence of edges between variables.

Steps for sparsiy Controt:
DAGs with

e Apply a threshold or criteria to determine the significance of the estimated
partial correlations.

* Remove weaker or less significant edges to create a sparse DAG that focuses on
the most important causal relationships.

NONEFA S cdge Orientation;

» Utilize additional techniques, such as constraint-based methods or local search
algorithms, to orient the edges in the DAG and determine the direction of
influence between variables.

Plotting the DAG:

* Visualize the resulting DAG, representing the estimated causal relationships
among variables.

e Use arrows to indicate the direction of influence between variables.



Case study: All India Summer Monsoon (Jun-Jul-Aug-Sep)
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Monsoon is characterized by seasonal wind reversal in tropics
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Predictability of AISMR: Process

El Nino and Rainfall

La Nina and Rainfall
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What about last year (El Nifio
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3 INDIA METEOROLOGICAL DEPARTMENT

So Atgw faae wwmn, a9 e
HYDROMET DIVISION, NEW DELHI

N
SUBDIVISION RAINFALL MAP

Period : 01-06-2023 To 09-09-2023 ‘4:"7

ALL INDIA

Actual Normal % Dep.
6846 7606 10

CATEGORYWISE NO. OF SUBDIVISIONS

LARGE EXCESS 0
EXCESS 5
NORMAL 23
DEFICIENT 8

LARGE DEFICIENT 0
NORAIN 0

Legend

[ Large Excess [ 60% or more] [] Excess [ 20% to 59%) [| Normal [-18% to 19%] [] Deficient [-68% to -20%] || Large Deficient [-99% to -60%] || No Rain [-100%] [ No Data
NOTES :
a) RainFall figures are based on operation data.

b) Small figures indicate actual rainfal (mm), while bold figures indicate Normal rainfall (mm).
c) Percentage Departures of rainfall are shown in brackets.



Predictability of AISMR: Process
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Impact of the Indian Ocean D{iﬂ
between the Indian Monsoon Rain

Karumuri Ashok', Zhaoyong Guan? and Toshio Y

Institute for Global Change Research, Frontier Research System f
Kanazawa-Ku, Yokohama City, Kanagawa, 236-0001, Japan

Abstract. The influence of the recently discovered Ind
Ocean Dipole (IOD) on the interannual variability of
Indian summer monsoon rainfall (ISMR) has by
investigated for the period 1958-1997. The IOD and
El Nifio/Southern Oscillation (ENSO) have cc
affected the ISMR during the last four decades. Whenever
ENSO-ISMR correlation is low (high), the IOD-ISI
correlation is high (low). The IOD plays an important rol
a modulator of the Indian monsoon rainfall, and influences|
correlation between the ISMR and ENSO. We h
discovered that the ENSO-induced anomalous circulal
over the Indian region is either countered or supported by
IOD-induced anpmalous meridional circulation ¢
depending upon the phase and amplitude of the two mg
tropical phenomena in the Indo-Pacific sector.

1. Introduction

The Indian summer monsoon rainfall (ISMR) occur]
during June-September plays a crucial role on both
agriculture and economy of the Indian subcontinent. Off
many phenomena that excite the ISMR variability [Kris)
Kumar et al., 1995, Slingo, 1999], the most important laj
scale forcing was the El Nifio/Southern Oscillation (EN
till two decades back. The i 1 variations of IS
have motivated studies of the ENSO since the tum of|
twentieth century [Walker, 1923, Barnerr, 1984]. Tt is wi
known that there was a megative correlation between
anomalies of the [SMR and NINO3 SST (area-averaged
surface temperatures over 5°N-5°S, 150°W-90°W) anomaj
However, the relationship between the ISMR and ENS
susceptible to decadal changes; it is now weakening [Krig
Kumar et al., 1999]. We wiessed two major ENSO even
the last decade of twentieth century. But the ISMR
always normal or above normal during this period (a: p;:s
PRI Y Loical T he
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Earth Syst. Dynam., 11, 903-923, 2020
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Chapter 8 - Indian Ocean Dipole influence on
Indian summer monsoon and ENSO: A review

Annalisa Cherchi ?, Pascal Terray ?, Satyaban B. Ratna ¢, Syam Sankar d K P Sooraj®,
Swadhin Behera f

Show more v/

+ Add to Mendeley & Share %3 Cite

https://doi.org/10.1016/8978-0-12-822402-1.00011-9 7 Get rights and conten

Abstract

The Indian Ocean Dipole (I0D) is one of the dominant modes of variability of the tropi
Indian Ocean and it has been suggested to have a crucial role in the teleconnection
between the Indian summer monsoon and El Nifio Southern Oscillation (ENSO). The
main ideas at the base of the influence of the IOD on the ENSO-monsoon teleconnectidg
include the possibility that it may strengthen summer rainfall over India, as well as thg
opposite, and also that it may produce a remote forcing on ENSO itself. In the future, tH
10D is projected to increase in frequency and amplitude with mean conditions mimick
the characteristics of its positive phase. Still, state-of-the-art global climate models ha
large biases in representing the mean state and variability of both 10D and ISM, with
potential consequences for their future projections. However, the characteristics of the]

10D and ENSO are likely to continue in a future warmer world, with persistence of thei
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ABSTRACT

The Indian Summer Monsoon Rainfall (ISMR) has contributed almost 75.3% to the annual rainfall during 1901-2020 and
is considered as the lifeline of India for a sustainable agriculture and economy. ISMR exhibits significant spatial and

temporal variability in the form i s

{ and Biennial oscillations. In the present study, we

have used gridded Indian Meteorological Department (IMD) rainfall data from 1903 to 2020 with 0.250x0.2 50 resolution
and have focused on ISMR variability due fo coupled ocean atmosphere processes in the Indian and Pacific oceans. As
proxies of these coupled ocean atmosphere processes, we consider the role of ENSO and 10D on ISMR. Although several
studies were carried out on these aspects during the last two and half decades, the present study is different from other and
aims to examine the ISMR varighility during 1900-2020 over All India (Af) and different homogeneous zones (NEI, NWI,
CI and SPI) under El Nino, La Ning, +ve and -ve 10D {without any co-ocowrrence) and with co-occurrence of El Nino with
+ve JOD and La Nina with —ve 0D, Considering the changing relationship of ISMR with ENSO and 10D, this study alsa
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zones and Pre

Sfocuses on regional ISMR variability due to various ENSO-IOD conditions.

pitation concentration index.

1. Introduction

Agricultural practices in India and in many other
south Asian countries are intricately linked to the
performance of the monsoon, particularly ISMR
(Parthasarathy et al., 1988). Considering significant
spatial-temporal variabilities of ISMR forced from
both internal and external forcing, understanding
ISMR variability and its prediction is extremely
important. Since the internal forcing, mainly intra-
seasonal oscillations set a limit to the predictability,
major focus are on understanding external forcing
including  the  coupled  ocean-atmosphere
interaction, SST, snow cover etc. to improve
prediction of ISMR. Besides other external forcing,
the El Nino Southern Oscillation (ENSO) and
Indian Ocean Dipole (I0D) are widely considered
as the two major climate drivers of ISMR (Ashok et
al., 2001; Behera & Ratnam, 2018; Cherchi et al.,
2021; Hrudya et al, 2020; Krishnaswamy et al.,
2014; Rajeevan & Pai, 2007; Saji et al, 1999;
Varikoden et al, 2020; Webster et al., 1999). Past
studies have elucidated on the relationship of ISMR
with ENSO and 10D. However, weakening
relationship between ENSO and ISMR after 1970s
was revealed by studies conducted during the last
two decades (Ashok et al., 2019; Kawamura et al.,
2005; Kumar et al., 1999), which lead to study the

impacts of IOD on ENSO-ISMR relationship
(Ashok et al., 2001). The weakening relationship
was attributed to shift in the spatial correlation
pattern over the Indian subcontinent from northwest
to north east. The study revealed that when the
ENSO-ISMR. correlation is low (high), the I0D-
ISMR correlation is high (low). Many other studies
(Anil et al., 2016; Ashoket al., 2004; Gadgil et al.,
2004; Webster et al, 1999) also indicated that
frequent emergence of the 10D have weakened the
otherwise robust relationship between ENSO and
ISMR. Thus, it was made apparent that 10D, which
moderates the meridional circulation by inducing
anomalous convergence (divergence) pattern over
Bay of Bengal during positive (negative) 10D
events, leads to excessive (deficit) monsoon rainfall
over the monsoon trough region (Ashok et al,
2003). This feature was evident in the typical 10D
year of 1994 (Behera et al., 1999) and positive 10D
year 1997 Studies indicated the influences of ENSO
and 10D on the ISMR as opposite to one another
(Ashoket al, 2004; Ashok & Saji, 2007). Years
with co-occurrence of +ve I0OD with El Nino
(1961,1963,1967,1972,1977,1982,1983,1994  and
1997) have positive anomalies of rainfall along the
monsoon trough area, the west coast and northwest
India while in years with pure +ve I0D events

linkage.




In summary...

» Weakening relationship between ENSO and ISMR after 1970s
was revealed by studies conducted during the last two
decades.

There is impacts of IOD on ENSO-ISMR relationship.

Frequent emergence of the IOD have weakened the otherwise
robust relationship between ENSO and ISMR.

» Years with co-occurrence of +ve IOD with El Nino
(1961,1963,1967,1972,1977,1982,1983,1994 and 1997) have
positive anomalies of rainfall along the monsoon trough area,
the west coast and northwest India.

Current IOD/DMI index
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Figure 1. The 41-month sliding correlation coefficients between
ISMR and IODMI (solid), and those between monthly ISMR and
NINO3 SST (dashed; to be multiplied by —1) during 1958-1997.
The significant correlation value at 90% confidence level is 0.38
(verified by 1,000 randomized time series, using the Monte-Carlo
simulations)
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How good is CFavZ to predict AISMR?

Observational References:
Rainfall data from India Met. Dept.

Nifio 3.4 and DMI SST Indices from NOAA’s

PSL webpage.

Obs,,,¢ =[0,], k=1982-2022

Seasonal Climate Model: Climate Forecast
system v2 from NCEP-Long (lead -1
hindcast from 1982-2022). Nifno3.4 and
DMI SST Indices calculated from SST.

Model,, ,as =[M,] ,k=1982-2022
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Kling-Gupta Efficiency (KGE)

where = correlation coefficient
s % _u
B =bias ratio=—
u

e’
y =variability ratio=—-=
v,

and CV =coe

o =standard deviation

KGE =1=y(r=1) +(B=1)"+(r-
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Process-oriented dynamical Model evaluation: Traditionally

Observation Model
3
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AISMR 1 -0.57 0.11 AISMR 1 -0.75 -0.31
Nino 3.4 Index 1 0.44 Nino 3.4 Index 1 0.48
Dipole Mode Index 1 Dipole Mode Index 1




Process-oriented dynamical Model evaluation: Causal Structure learning

Observation CFSv2

Threshold = 0.0 Threshold = 0.0

DAG between AISMR,Nino3.4 and DMI

Threshold: Partial Correlation value



Process-oriented dynamical Model evaluation: Causal Structure learning
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How to Quantify the Similarity between Model and observational DAG?

»> Step 1: Convert DAG in Adjacency Matrix for both Obs. and Model.
> Step 2: Estimate Confusion Matrix from two Adjacency Matrix.
» Step 3: Calculate a score (F17?).

Adjacency Matrix

> Step 1

A B C |D

OO |0 | O
OO0 |O |k
oo | |O
O, |O|O

o
O

0 A {1 if there is an edge from j to i
Aig =

(0 otherwise




Quantify the Similarity between Model and observational DAG

Observation

Adjacency Matrix

CFSv2

Nino3.4 Index Dipole Mode Index | AISMR Nino3.4 Index Dipole Mode Index | AISMR
Nino34Index |0 0 I [vinozamdex o0 0 N
Dipole Mode Index |0 0 1 Dipole Mode Index |0 0 0
AISMR 0 0 0 AISMR 0 0 0
e Confusion Matrix
The advantages of the Matthews :) I H
Srdaccuracy i binary cassheation Positive Negative TP: True Positives
evaluation .
Positive _ 0 (FP) TN: True Negatives.
Negative 1 (FN) 7 (TN) FP: False P05|t|v.es.
FN: False Negatives.
F1 Score: 0.67 2TP
MCC Score: 0.67 Fl score = TP+ FN + FP
MCC = TN XTP —FP xXFN

J(TN + FN)(FP + TP)(TN + FP)(FN + TP)



Quantify the Similarity between Model and observational DAG

/ |

Adjacency Matrix

/ 4

Nino3.4 Index Dipole Mode Index | AISMR Nino3.4 Index Dipole Mode Index | AISMR
Nino3.4 Index 0 0 _ Nino3.4 Index 0 0 _
Dipole Mode Index |0 0 1 Dipole Mode Index |0 0 0
AISMR 0 0 0 AISMR 0 0 0
Confusion Matrix
Positive Negative

Positive

Negative

1 (FN)

TR o -7

2 (TN)

*Remove all irrelevant TN

F1 Score: 0.67
MCC Score: 0.57

F1 ignores the True Negatives and thus is
misleading for unbalanced classes



>

Concluding Remarks

Teleconnection is the most important factor for the
rocesst-orlented model diagnostic for seasonal
orecast.

Linear Correlation is de facto major for such
practice.

Proposing “Causal Structure Learning” for model
evaluation as a type of process-oriented .
framework. Causality deals with understanding
the cause and effect between different fields

Causal discovery graphs from observation and
dynamical model shows physical pathways of
interaction.

g.uantification of similarity between causal
iscovery graphs of dynamical model and
observations provides a causal-metric to assess
the fidelity of dynamical models.

“CausalML combines techniques from
machine learning and causal inference to
understand and model causal relationships
in data.”



Thank you!

Nachiketa Acharya
Senior Climate Data Scientist at Lynker



mailto:dr.nachiketaacharya@gmail.com

	Slide 1: Process-Oriented Dynamical Models Evaluation for Seasonal Prediction through the Lens of Causal Network 
	Slide 2
	Slide 3: Standard Evaluation process of Dynamical Model
	Slide 4: Major Predictability of Seasonal Forecast time scale: ENSO
	Slide 5: Process-oriented Evaluation based on Teleconnection 
	Slide 6: Causal Pathways for Teleconnection 
	Slide 7: Goal of this study
	Slide 8: 3 Traps of Statistics (3S’)
	Slide 9: Causality
	Slide 10: Causality
	Slide 11: Causal Modeling
	Slide 12: Basics of Causal Graphs 
	Slide 13: Causal Graphs are Directed Acyclic Graphs (DAGs) 
	Slide 14: Methods for Causal Discovery  
	Slide 15: “PCMCI” de facto model in Earth Science
	Slide 16: Why we choose DAG with No tears over PCMCI?
	Slide 17: “DAGs with NO TEARS (Nonlinear Optimization of TEmporal Relationships in Systems) ”
	Slide 18: Steps for DAGs with NO TEARS
	Slide 19: Case study: All India Summer Monsoon (Jun-Jul-Aug-Sep)
	Slide 20
	Slide 21
	Slide 22: In summary…
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Concluding Remarks
	Slide 32

