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* Probabilistic/ensemble predictions
increasingly common in hydrology
* Gneiting et al. 2007:
 ‘Sharpness, subject to reliability’
 Reliability can be checked with
Probability Integral Transforms

Florentine River at Eleven Road (ID: 1369)
Forecast for 17 Nov 2020 to 24 Nov 2020 (10:00 AEDT)
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http://www.bom.gov.au/water/

 Reliable forecast probabilities translate directly to ® Gauge
decisions ] subarea

Stream ~540146

— No hedging needed
* Uncertainty can be propagated downstream

e Qutputs can be used directly
in decision models
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* PIT can use fewer forecast-obs pairs than
rank histograms
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Example Forecast
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* Must condition any
stratification on forecasts
(Bellier et al. 2017)
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* Overprediction
+ Underprediction * Too wide

Peak timing
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* Fct peaks too late Fct peaks too concentrated l“'l'
+ Fct peaks too early * Fct peaks too dispersed -
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Obs-based selection 1
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Obs and forecasts drawn from the same normal distributions
‘Flood threshold’ based on 99% quantile of ‘observations’

Fct-based selection
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* Renard et al. 2010
* alpha-index '
* xi-index (coverage)
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* Comparison to CRPS |t
decomp (Hersbach 2000)

CRPS = Reli — Resol + U
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, predictions ,
No autocorrelation Strong autocorrelation

—— Example ensemble member
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* |f trend in a model
is not represented
in observations,

teng e é

e Can combine with
standard trend
assessments:

* Sen’s slope

e Mann-Kendall test
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Trend and Uncertainty in Long Inflow Predictions

als

Non-stationary inflow climatology with autocorrelation

auge sites

FLORENTINE_RIVER_ABOVE_DERWENT_RIVER ARM_RIVER HELLYER_RIVER_AT_GUILDFORD_JUNCTION
mean change in annual inflow 2.7%/10y mean change in annual inflow 3%/10y mean change in annual inflow 1.0%/10y
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FRANKLIN_RIVER_AT _FINCHAM FISHER_RIVER_UPSTREAM_LAKE_MACKENZIE COLLINGWOOD_RIVER
mean change In annual inflow = -1.6%/10y mean change in annual inflow = -0.5%/10y mean change in annual inflow = -1.4%/10y
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Fig courtesy David Horsley
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TULIP Stationary climatology
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PIT uniformity a formal test of reliability

Requires fewer data points than rank histograms
Summary statistics are available

Diagnose issues with spatial & temporal correlations
Diagnose problems with non-stationarity
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Thank you

Land & Water
James Bennett
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Forecast verification
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TULIP Old method

Monthly
* Monthly model Inflow
* Reliability of 1-year
accumulated
inflow
e Autocorrelation?
Annual
Inflow
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Std uniform variate



Lake Meadowbank

Bl obs

Monthly model

iabili ‘ TULIP
Reliability of 1-year ]
accumulated []0ld method
inflow

Autocorrelation?
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_ Peak Magnitude Peak timing

stdCRPS ~ CRPS (h)

AWPI (h)

magnitude

/

* Must condition any
stratification on forecasts
(Bellier et al. 2017)
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* Overprediction Too narrow * Fct peaks too late Fct peaks too concentrated
+ Underprediction * Too wide - Fct peaks too early - Fct peaks too dispersed
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