

A new approach for multi-category forecast verification method

Habibur Rahaman Biswas Regional Meteorological Centre Kolkata, India

Background

- Forecast verification is an important process to assess its quality and it is also essential to monitor accuracy, understanding of error factors and consequent improvement in forecasting system.
- The outcomes of forecast verification also justify the reliability and greater accountability to users in respect of weather disaster action point of view.
- There are different methods of forecast verification in practice followed by national hydro-meteorological agencies.
- Selection of forecast verification method has become extremely challenging in view of different kind of forecast applications and availability of different source of observational data in different forms & scale.

Different kind of categorical forecast/warning for users

FAURLY MIDE SPREAD: No. of reingauge stations reported reinfal >= 0.1 mm is 31-75% of total no. of resorting stations on the day WIDE SPREAD : No. of reingauge stations reported ninfall >= 0.1 mm is 75-100% of solal no. of reporting stations on the day

Legend	Category	% Stations
WS	Widespread/Most Places	76-100
FWS	Fairly Widespread/Many Places	51-75
SCT	Scattered/ A Few Places	26-50
ISOL	Isolated Places	1-25
DRY	No Rain	0

Rainfall Intensity Terminology	Rainfall amount (mm)
Very Light	Trace to 2.4
Light	2.5 -15.5
Moderate	15.6 to 64.4
Heavy	64.5 -115.5
Very Heavy	115.6 - 204.4
Extremely Heavy	>= 204.5

QPF forecast for flood monitoring

Quantitative precipitation forecast for river catchments in different ranges 0(No rain), 0.1 -10 mm , 11-25mm, 26-37 mm, 38-50mm , 51-75mm, 76-100 mm& more than 100 mm used in India for easy understanding and analysis for possible rise of water levels in different river.

River Sub-basin-wise Quantitative Precipitation Forecast (QPF)

			Sub				QPF (mm)			
	S. No.	Basin Name	basin Name	Day-1 (01.08.23)	Day-2 (02.08.23)	Day-3 (03.08.23)	Day-4 (04.08.23)	Day-5 (05.08.23)	Day-6 (06.08.23)	Day-7 (07.08.23)
	1	BAITRANI	ВТ	76-100	26-37	11-25	0.1-10	0.1-10	0.1-10	0.1-10
	2	LOWER BRAHMANI	LB	51-75	38-50	11-25	0.1-10	0.1-10	0.1-10	0.1-10
	3	UPPER BRAHMANI	UB	51-75	51-75	26-37	0.1-10	0.1-10	0.1-10	0.1-10
	4	BHURABALANG	BB	51-75	11-25	0.1-10	0.1-10	0.1-10	0.1-10	0.1-10
	5	LOWER MAHANADI	LM	38-50	38-50	11-25	0.1-10	0.1-10	0.1-10	0.1-10
	6	NAGAVALI	NV	11-25	11-25	0.1-10	0.1-10	0.1-10	0.1-10	0.1-10
	7	RUSHIKULIYA	RK	11-25	11-25	0.1-10	0.1-10	0.1-10	0.1-10	0.1-10
	8	SUBERNAREKHA	SR	76-100	26-37	11-25	0.1-10	0.1-10	0.1-10	0.1-10
53	9	UPPER MAHANADI	UM	11-25	38-50	11-25	0.1-10	0.1-10	0.1-10	0.1-10
	10	VAMSDHARA	VD	11-25	11-25	0.1-10	0.1-10	0.1-10	0.1-10	0.1-10

FMO: 15 locations Total No. of Sub basins: 15

Contingency Table for verification of Spatial Rainfall Forecast

Observed		Forecast Range									
Range	Dry	Isolated	Scattered Fairly		Widespread	Total					
				Widespread							
Dry	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁					
Isolated	F ₂₁	F ₂₂	F ₂₃	F ₂₄	F ₂₅	F ₂					
Scattered	F ₃₁	F ₃₂	F ₃₃	F ₃₄	F ₃₅	F ₃					
Fairly	F ₄₁	F ₄₂	F ₄₃	F ₄₄	F ₄₅	F ₄					
Widespread											
Widespread	F ₅₁	F ₅₂	F ₅₃	F ₅₄	F ₅₅	F ₅					
Total	A ₁	A ₂	A ₃	A ₄	A ₅	Т					

 $PC = \sum F_{||}/T^{*}100$ $CSI = (F_{11}/(F_{1}+A_{1}-F_{11}), F_{22}/(F_{2}+A_{2}-F_{22}), F_{33}/(F_{3}+A_{3}-F_{33}), F_{44}/(F_{4}+A_{4}-F_{44}), F_{55}/(F_{5}+A_{5}-F_{55}))$ $HSS = (\sum F_{||} - \sum F_{|}A_{|}/T)/(T - \sum F_{|}A_{|}/T)$

The POD, FAR, MR, PC, HSS etc for each category can be computed by reducing the contingency table into 2x2 contingency table for Yes/No Forecast

Contingency Table for verification of Rainfall intensity Forecast

Observed		Forecast Range										
Range	Dry	Light	Moderate	Heavy	Very Heavy	Extremely	Total					
						Heavy						
Dry	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁₆	F ₁					
Light	F ₂₁	F ₂₂	F ₂₃	F ₂₄	F ₂₅	F ₂₆	F ₂					
Moderate	F ₃₁	F ₃₂	F ₃₃	F ₃₄	F ₃₅	F ₃₆	F ₃					
Heavy	F ₄₁	F ₄₂	F ₄₃	F ₄₄	F ₄₅	F ₄₆	F ₄					
Very Heavy	F ₅₁	F ₅₂	F ₅₃	F ₅₄	F ₅₅	F ₅₆	F ₅					
Extremely	F ₆₁	F ₆₂	F ₆₃	F ₆₄	F ₆₅	F ₆₆	F ₆					
Heavy												
Total	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	т					

 $PC = \sum F_{11}/T^{*}100$ $CSI = (F_{11}/(F_{1}+A_{1}-F_{11}), F_{22}/(F_{2}+A_{2}-F_{22}), F_{33}/(F_{3}+A_{3}-F_{33}), F_{44}/(F_{4}+A_{4}-F_{44}), F_{55}/(F_{5}+A_{5}-F_{55}))$ $HSS = (\sum F_{11} - \sum F_{1}A_{1}/T)/(T - \sum F_{1}A_{1}/T)$

The POD, FAR, MR, PC, HSS etc for each category can be computed by reducing the contingency table into 2x2 contingency table for Yes/No Forecast

Contingency Table for verification of QPF

Observed	Forecast Range (mm)										
Range(mm)	0	0.1 -10	11-25	26-37	38-50	51-75	76-100	>100	Total		
0	F_{11}	F ₁₂	F_{13}	F_{14}	F_{15}	F_{16}	F ₁₇	F_{18}	F_1		
0.1-10	F_{21}	F ₂₂	F ₂₃	F_{24}	F ₂₅	F ₂₆	F ₂₇	F_{28}	F_2		
11-25	F_{31}	F ₃₂	F ₃₃	F ₃₄	F ₃₅	F ₃₆	F ₃₇	F ₃₈	F ₃		
26-37	F_{41}	F ₄₂	F_{43}	F_{44}	F ₄₅	F ₄₆	F ₄₇	F ₄₈	F_4		
38-50	F_{51}	F ₅₂	F ₅₃	F ₅₄	F ₅₅	F ₅₆	F ₅₇	F ₅₈	F_5		
51-75	F_{61}	F ₆₂	F ₆₃	F ₆₄	F ₆₅	F ₆₆	F ₆₇	F ₆₈	F_6		
76-100	F_{71}	F ₇₂	F ₇₃	F ₇₄	F ₇₅	F ₇₆	F ₇₇	F ₇₈	F_7		
>100	F_{81}	F ₈₂	F ₈₃	F ₈₄	F ₈₅	F ₈₆	F ₈₇	F ₈₈	F ₈		
Total	A_1	A ₂	A ₃	A_4	A_5	A_6	A ₇	A ₈	Т		

 $\begin{aligned} \mathsf{PC} &= \sum \mathsf{F}_{||} / \mathsf{T}^* 100 \\ \mathsf{CSI} &= (\mathsf{F}_{11} / (\mathsf{F}_1 + \mathsf{A}_1 - \mathsf{F}_{11}), \ \mathsf{F}_{22} / (\mathsf{F}_2 + \mathsf{A}_2 - \mathsf{F}_{22}), \ \mathsf{F}_{33} / (\mathsf{F}_3 + \mathsf{A}_3 - \mathsf{F}_{33}), \ \mathsf{F}_{44} / (\mathsf{F}_4 + \mathsf{A}_4 - \mathsf{F}_{44}), \\ \mathsf{F}_{55} / (\mathsf{F}_5 + \mathsf{A}_5 - \mathsf{F}_{55}), \ \mathsf{F}_{66} / (\mathsf{F}_6 + \mathsf{A}_6 - \mathsf{F}_{66}), \ \mathsf{F}_{77} / (\mathsf{F}_7 + \mathsf{A}_7 - \mathsf{F}_{77}), \ \mathsf{F}_{88} / (\mathsf{F}_8 + \mathsf{A}_8 - \mathsf{F}_{88})) \\ \mathsf{HSS} &= (\sum \mathsf{F}_{ii} - \sum \mathsf{F}_i \mathsf{A}_i / \mathsf{T}) / (\mathsf{T} - \sum \mathsf{F}_i \mathsf{A}_i / \mathsf{T}) \end{aligned}$

The POD, FAR, MR, PC, HSS etc for each category can be computed by reducing the contingency table into 2x2 contingency table for Yes/No Forecast

Users/ Disaster managers perspectives:

- Users prefers to the prediction which captures the high impact weather events more accurately besides normal weather phenomena.
 - Frequency of abnormal /high impact rainfall or any other weather parameter is very less than the normal values.
- Sometimes forecast verification overall results shows high skill scores though the forecast missed the high impact rare weather events.

Forecast 1: Poor Skill for less frequency high impact weather

Observed		Forecast Range (mm)										
Range(mm	0	0.1 -	11-25	26-37	38-50	51-75	76-	>100	Total			
)		10					100					
0	3	2	0	0	0	0	0	0	5			
0.1-10	1	24	4	1	0	0	0	0	30			
11-25	0	5	32	3	0	0	0	0	40			
26-37	0	0	4	4	1	0	0	0	9			
38-50	0	0	1	2	2	1	0	0	6			
51-75	0	0	0	1	2	1	0	0	4			
76-100	0	0	0	1	1	1	1	0	4			
>100	0	0	0	0	1	1	0	0	2			
Total	4	31	41	12	7	4	1	0	100			

Forecast 2: Better prediction for less frequency high impact weather

Observed		Forecast Range (mm)												
Range(mm)	0	0.1 - 10	11-25	26-37	38-50	51-75	76- 100	>100	Total					
0	4	1	0	0	0	0	0	0	5					
0.1-10	7	18	4	1	0	0	0	0	30					
11-25	0	9	28	3	0	0	0	0	40					
26-37	0	0	2	6	1	0	0	0	9					
38-50	0	0	1	1	4	0	0	0	6					
51-75	0	0	0	0	1	3	0	0	4					
76-100	0	0	0	0	1	0	3	0	4					
>100	0	0	0	0	0	1	0	1	2					
Total	11	28	35	11	7	4	3	1	100					

Comparison of overall Skill scores of two different sets of forecast

New approach for computation of forecast skill scores

- Overall skill scores (PC, HSS) represents mostly on the performance for predictability of high frequency events.
- To represent the performance for predictability of low frequency events, weighted Overall Skill Scores can be computed with construction of weighted contingency matrix.
- Weights can be taken as percentage of reciprocal of historical/climatological values for each forecast category.

New approach for computation of forecast skill scores

Category of forecast ranges	Climatological percentage of occurrence
0	C ₁
0.1-10	C ₂
11-25	C ₃
26-37	C ₄
38-50	C ₅
51-75	C ₆
76-100	C ₇
>100	C ₈

Weights for each category is defined as $W_i = 1/C_i * 100$ where i=1 to 8.

Contingency Table for verification of QPF

Observed		Forecast Range (mm)										
Range(m	0	0.1 -10	11-25	26-37	38-50	51-75	76-100	>100	Total			
m)												
0	W_1F_{11}	W_1F_{12}	W_1F_{13}	W_1F_{14}	W_1F_{15}	W_1F_{16}	W_1F_{17}	W_1F_{18}	F ₁			
0.1-10	$W_2 F_{21}$	$W_2 F_{22}$	W_2F_{23}	$W_2 F_{24}$	$W_2 F_{25}$	$W_2 F_{26}$	$W_2 F_{27}$	$W_2 F_{28}$	F ₂			
11-25	W_3F_{31}	W_3F_{32}	W_3F_{33}	W_3F_{34}	W_3F_{35}	W_3F_{36}	W_3F_{37}	W_3F_{38}	F ₃			
26-37	W_4F_{41}	W_4F_{42}	W_4F_{43}	W_4F_{44}	W_4F_{45}	W_4F_{46}	W_4F_{47}	W_4F_{48}	F_4			
38-50	$W_5 F_{51}$	W_5F_{52}	W_5F_{53}	W_5F_{54}	W_5F_{55}	W_5F_{56}	W_5F_{57}	W_5F_{58}	F_5			
51-75	W_6F_{61}	W_6F_{62}	W_6F_{63}	W_6F_{64}	W_6F_{65}	W_6F_{66}	W_6F_{67}	W_6F_{68}	F_6			
76-100	W_7F_{71}	W_7F_{72}	W_7F_{73}	W_7F_{74}	W_7F_{75}	W_7F_{76}	W_7F_{77}	W_7F_{78}	F ₇			
>100	W_8F_{81}	W_8F_{82}	W_8F_{83}	W_8F_{84}	W ₈ F ₈₅	W_8F_{86}	$W_{8}F_{87}$	W_8F_{88}	F ₈			
Total	A ₁	A ₂	A ₃	A_4	A ₅	A ₆	A ₇	A ₈	Т			

$$\begin{split} \mathsf{PC} &= \sum \mathsf{W}_{i} \mathsf{F}_{ii} / \mathsf{T}^{*} 100 \\ \mathsf{CSI} &= (\mathsf{W}_{1} \mathsf{F}_{11} / (\mathsf{F}_{1} + \mathsf{A}_{1} - \mathsf{W}_{1} \mathsf{F}_{11}), \mathsf{W}_{2} \mathsf{F}_{22} / (\mathsf{F}_{2} + \mathsf{A}_{2} - \mathsf{W}_{2} \mathsf{F}_{22}), \mathsf{W}_{3} \mathsf{F}_{33} / (\mathsf{F}_{3} + \mathsf{A}_{3} - \mathsf{W}_{3} \mathsf{F}_{33}), \mathsf{W}_{4} \mathsf{F}_{44} / (\mathsf{F}_{4} + \mathsf{A}_{4} - \mathsf{W}_{4} \mathsf{F}_{44}), \mathsf{W}_{5} \mathsf{F}_{55} / (\mathsf{F}_{5} + \mathsf{A}_{5} - \mathsf{W}_{5} \mathsf{F}_{55}), \mathsf{W}_{6} \mathsf{F}_{66} / (\mathsf{F}_{6} + \mathsf{A}_{6} - \mathsf{W}_{6} \mathsf{F}_{66}), \mathsf{W}_{7} \mathsf{F}_{77} / (\mathsf{F}_{7} + \mathsf{A}_{7} - \mathsf{W}_{7} \mathsf{F}_{77}), \mathsf{W}_{8} \mathsf{F}_{88} / (\mathsf{F}_{8} + \mathsf{A}_{8} - \mathsf{W}_{8} \mathsf{F}_{88})) \\ \mathsf{W}_{8} \mathsf{F}_{88}) \mathsf{W}_{8} \mathsf{F}_{88}) \mathsf{W}_{1} \mathsf{HSS} = (\sum \mathsf{W}_{i} \mathsf{F}_{ii} - \sum \mathsf{F}_{i} \mathsf{A}_{i} / \mathsf{T}) / (\mathsf{T} - \sum \mathsf{F}_{i} \mathsf{A}_{i} / \mathsf{T}) \end{split}$$

Comparison of overall Skill scores of two different sets of forecast

Comparison of Skill scores for individual cateogories of two different sets of forecast

Conclusions

- Weighted skill scores can be better choice for evaluation of forecast in view of users perspectives.
- It can helps forecasters to choose better performed numerical models as many models usually provide good results for normal range of values while not predicted high impact weather values.
- The method has also scope to utilize in case of some others deterministic verification skill Scores computations.

THANKS

